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Abstract
Biological aging is known as senescence, and gradually leads to death through aging and mature organ deterioration. Senescence plays an important role in growth 
and development. Under the normal physiological conditions, the action of senescence is similar to apoptosis, and has a positive protective response to stimulation. 
However, in some pathological processes, the senescence effect may be positive or negative. To clarify the role of senescence in a certain disease, the exploration of 
its special regulation mechanism is the key to search for the new targets of the clinical treatment of disease. Oxidative stress is caused by excessive ROS involved in 
intracellular reactions and leads to the accumulation of oxidative damage to induce the changes in molecules, cells and tissues. The senescence is inseparable from 
oxidative stress, so the relationship between them has already become a hot issue of research. In this review, it will be focused on the research progress of senescence 
and the correlation of senescence with oxidative stress and mitochondrial dysfunction.
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Introduction
Senescence is a physiological phenomenon with a progressive 

decline in function of an organ or life with the increasing of the age, 
ultimately leading to death [1]. Cellular senescence is a permanent 
proliferation arrest by genomic instability or abnormal stimulation. 
And it is a protective or even tumor-suppressing physiological 
process [2,3]. Although senescent cell growth is quiescent, it still 
retains metabolic activity and changes in cellular and molecular levels, 
which can alter their microenvironment [4-7]. The characteristics of 
senescent cells include enlargement and flattened phenotype, large 
vacuoles observed under the microscope, occasional multi-nuclear 
phenomenon, and positive β-galactosidase staining reaction. It has 
shown that Sudan black can be used to detect lipofuscin in lysosomes 
as an indicator of the aging or senescence-related secretory phenotype 
(SASP) [4,8-11]. Cellular senescence can trigger tissue remodeling in 
the normal embryonic development and the tissue damage, and the 
subsequent process is clearance and regeneration. Therefore, temporary 
senescence is beneficial and can remove damaged cells, which is similar 
to apoptosis to some extent [12,13]. However, long-term senescence 
is harmful. The accumulation of senescent cells in some organs, 
usually in skin, liver, lungs, and spleen, will has an adverse effect on 
these organs [14]. At present, cellular senescence has been found in 
a variety of tissues and diseases, such as cancer (lung cancer, breast 
cancer, neuroblastoma, astrocytoma, colorectal cancer, etc.), fibrosis 
(idiopathic pulmonary fibrosis, renal fibrosis, etc.), chronic obstructive 
pulmonary disease COPD, pulmonary hypertension [4,15-19], etc.

Oxidative Stress refers to the excessive production of reactive 
oxygen species (ROS) exceeds its clearance in cells, which can result 
in the imbalance between the antioxidant and oxidative system [20]. 
It can be caused by smoking, obesity, ultraviolet radiation, drug 
abuse and so on. Excessive ROS participate in intracellular reactions 
to accumulate oxidative damage and the changes in molecules, cells, 
and tissues. It is characterized by increased ROS, decreased antioxidant 
capacity, and functional defects in antioxidant response [20]. 
Mitochondria are important sites for ROS production [21]. ROS are 
oxygenates produced by intracellular aerobic metabolism or exogenous 
oxidants. They are highly active molecules, including superoxide anion, 

hydroxyl and hydrogen peroxide [22]. Mitochondria are not only the 
main source of ROS, but also the main target of oxidative damage, 
which in turn can reduce the efficiency of mitochondria and lead to 
more ROS production [21]. Besides mitochondria, peroxisomes are 
also involved in ROS production and clearance [22]. ROS can be taken 
as an important biological medium and as a harmful medium. At 
physiologically low concentrations or at appropriate concentrations, 
ROS regulate protein phosphorylation, ion channels, and transcription 
factors through redox reactions [23]. ROS are involved in a variety 
of signaling cascades respond to growth factor stimulation and 
inflammatory signaling pathways, and involved in the regulation of 
a variety of cellular processes including differentiation, proliferation, 
senescence, apoptosis [22,23], etc. However, under pathological 
conditions, excessively produced ROS may affect DNA, RNA, fat, 
and protein to cause their interactions to result in functional damage 
or irreversible changes in the target substance [23,24]. In summary, 
ROS are currently considered to be major executors in cell damage. 
Oxidative stress can also sustain the damage to cells and even cause 
cancer [21,24].

In 1950s, Denham Harman et al. proposed the theory of free 
radicals in senescence [25]. The hypothesis was that the production of 
intracellular ROS and their toxic effects on various cellular components 
are the main determinants of longevity, which link the senescence 
with oxidative stress for the first time [25]. Since then, the theory of 
free radicals has been developed into the oxidative stress hypothesis 
[26]. It is believed that the reduction of the body’s antioxidant 
components during senescence leads to a decrease in the body’s ability 
to scavenge free radicals, which can causes the structural damage of 
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biological macromolecules accumulated with age [26]. In addition, 
as mitochondria plays a key role in the regulation of bioenergetics, 
oxidant production and cell death, and play a central role in the 
development of cellular senescence, the theory has been extended to 
mitochondrial oxidative stress theory [27]. Although there has been 
extensive research, the theory of senescence free radicals/oxidative 
stress is still controversial. Therefore, this review summarizes the 
current research status of senescence and oxidative stress and focus on 
the effects of oxidative stress on mitochondria during senescence and 
the problem to be resolved.

Senescence classification and related mechanisms 
Replicative senescence

Replicative senescence refers to the cell cycle arrest, which is 
expressed as an irreversible stop of proliferation, also known as 
the Hayflick limit, which can also be caused by increased telomere 
shortening and increased expression of cell cycle-dependent kinase 
inhibitors caused by massive replication [8]. When DNA double-
strand breaks, it triggers DNA damage reaction (DDR), which leads 
to γ-H2AX-positive senescence-related DNA damage foci formation, 
activates ATM and ATR, phosphorylates p53, and then activates p21 
[8,28]. In addition, both p16 and RB tumor suppressor have important 
roles in replicative senescence [29]. However, some studies have shown 
that p16 has little effect on aging in the mouse model, but it has a 
significant effect on aging in human [14].

Premature senescence

Premature senescence usually caused by many exogenous cellular 
stresses including oxidative stress, activation of oncogenes, DNA 
damage and chromatin abnormalities, which is non-autonomous. 
According to the different sources of exogenous stimulation, it can be 
divided into the following categories (Table 1).

Cancer-related senescence

Senescence is a highly potent, cell-independent tumor suppressor 
that blocks pre-cancerous cell proliferation and further reduces the 
risk of tumor formation through cell-independent paracrine SASP 
[30]. When the abnormal oncogene signaling is activated to prevent 
tumorigenesis, the cells often initiate the senescence processes [31]. 
This type of senescence is called oncogene-induced senescence 
(OIS), which is also a premature form [32]. This response is caused 
by hyperplasia and can also be caused by DNA hyper-replication, 
suggesting a same S-phase specific DNA damage response to replicative 
senescence [31]. Phosphorylation of p53 in OIS activates the ARF-p53 
tumor suppressor signaling cascade and activates transcription of 
downstream target genes, such as CDKN1A, which encodes the protein 
p21 [31,32]. The induction of OIS is also related to other senescence 
effectors. Some related studies have shown that the absence of tumor 
suppressor can cause cellular senescence. For example, the absence 
of Rb1 tumor suppressor genes in vivo leads to senescence with OIS-
like features [33]. Deletion of PTEN also induces senescence (known 
as PTEN-induced cell senescence, PICS) [8]. The characteristics of 
PICS are evident, but there is no OIS-like over-replication and DDR 
production [8]. At the same time, some studies have shown that the 

upregulation of INK4A and the accumulation of ETS2 in the absence 
of PTEN also contribute to senescence [34-36]. However, some factors 
secreted by senescent cells can promote the progression of tumors, 
and accelerate the proliferation and invasion of precancerous cells. 
Therefore, senescence in cancer has a dual dependence of time and 
environment [8].

Stress-induced senescence

After many different types of stress (such as oxidative stress), ROS 
levels increase significantly and the body’s antioxidant capacity declines 
[37]. Studies have shown that due to mitochondrial dysfunction, older 
animals have more ROS produced than younger animals, and oxidative 
damage to DNA, protein, and fat is increased in older animals [37,38]. 
In the case of senescence caused by ROS, the administration of 
antioxidants can delay or even prevent senescence, thus indicating the 
relationship between oxidative stress and senescence [39]. Studies have 
confirmed that under high levels of ROS, p38 MAPK is activated by 
the RAS-RAF-MEK-ERK cascade, which leads to an increase in p53 
transcriptional activity and up-regulation of p21 [40].

Immunesenescence

Senescence can continue to reshape the immune system. This 
process is called immunesenescence, which reflects the human 
senescence process or phenomenon in the immune system [41,42]. 
Human immunesenescence is a cellular and molecular process 
including the innate and adaptive immune reactions, to ultimately 
result in the entire immune deficiency [42]. Senescence is changing 
at different speeds, in different ways and towards different directions 
[43]. Many studies have shown that the impaired function of human 
monocytes and macrophages is associated with aging in innate 
immunity [41,44]. Besides innate immunity, acquired immunity is also 
targeted and remodeled in the aging process [41]. The key phenotypes 
and functions of peripheral blood T cells are changed, but the total T 
cell level is basically unchanged [41]. Earlier studies have confirmed 
that chronic stimulation is associated with thymus degeneration, slow 
proliferation of T cells and increased serum pro-inflammatory markers 
[43]. Human infection with cytomegalovirus can accelerate senescence 
by reducing the T cell receptor pool and promoting the proliferation 
of aged CD8+CD28-T cells [41]. These factors explain the relationship 
between inflammation and senescence, also known as “inflammatory 
senescence” [41]. Some other characteristic changes occur in the 
senescence of the immune system, especially T cells. The important 
characteristic changes comprise the reduced number and function 
of hematopoietic stem cells, degraded thymus, declined peripheral 
primary T cells, highly differentiated memory CD28-T cells, decreased 
CD4+/CD8+ ratio, and decreased IL-2 by T cell activation [42,43]. 
Administration of exogenous IL-2 reverses the defects in age-related 
T cell activation [45].

Oxidative stress

In the human body, more than 90% of oxygen is consumed by 
mitochondria, and 1-5% of the oxygen consumed is converted to 
superoxide by electron leakage from the mitochondrial electron 
transport chain [21]. The superoxide is produced spontaneously or 
catalyzed by superoxide dismutase (SOD) to be converted into hydrogen 
peroxide [46]. The hydrogen peroxide has membrane permeability 
and diffusibility, and it can be decomposed into water by glutathione 
peroxidase or thioredoxin peroxidase or catalase [46]. In the presence 
of divalent cations such as Fe2+ and Cu2+, Fenton’s reaction occurs and 
produces more active hydroxyl radicals [46]. Mitochondria are not only 

Classification Incentive
Cancer-related senescence Abnormal oncogene signaling activated
Stress-induced senescence ROS increase induced by different stress
Immunesenescence The immune system reshaped by aging

Table 1. Classification of premature senescence
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the main source of ROS, but also the main target of oxidative damage 
which can reduce the efficiency of mitochondria and induce more ROS 
production [21]. Peroxisomes are also involved in ROS production 
and clearance. Peroxisomes have several oxygen-consuming 
metabolic functions [22]. Oxygen consumption in peroxisomes leads 
to the production of hydrogen peroxide, which can oxidize multiple 
molecules [22]. It is shown that peroxisome dysfunction affects 
mitochondrial function, but its specific mechanism remains unclear 
[47]. Except the cellular metabolic processes, ROS can also be produced 
by overstimulation of nicotinamide adenine dinucleotide phosphate 
oxidase or as a response to different environmental stimuli such as 
growth factors, inflammation, ionizing radiation, ultraviolet light [22], 
etc. ROS can both as an important biological medium and as a harmful 
medium. At physiologically low concentrations or at appropriate 
concentrations, ROS regulate protein phosphorylation, ion channels 
and transcription factors through redox reactions [23]. ROS is involved 
in a variety of signaling cascades respond to growth factor stimulation 
and inflammatory signaling pathways, and is also involved in the 
regulation of a variety of cellular processes including differentiation, 
proliferation, senescence, apoptosis [22,23]. Oxidative stress can 
participate in the regulation of cell membrane signal transduction, 
such as protein kinase C and MAP kinase activity, proliferation and 
differentiation [21,26]. Apoptosis induced by oxidative stress not 
only prepares the birth passage for childbirth but also enhances the 
defense function of the organism. Therefore, proper oxidative stress is 
physiologically beneficial [21]. However, under pathological conditions, 
excessive ROS may affect DNA, RNA, fat and protein, which causes 
their interactions to result in functional damage or irreversible changes 
of the targets [24]. In summary, ROS are currently considered to be the 
major executors in cell damage. Oxidative stress can also cause damage 
to cells and even sustain cancer [21, 24].

Senescence, oxidative stress and mitochondrial dys-
function
The classification of the mechanism between senescence and 
oxidative stress

At present, there are mainly four pathways of oxidative stress-
induced cell senescence. One is the DNA damage response pathway 
which is that oxidative stress causes DNA damage to activate DDR 
reaction through activating p53 and up-regulating p21 expression to 
cause senescence [48]. The second is the nuclear factor κB (NF-κB) 
pathway. Excessive ROS by oxidative stress activates IκBs kinase, which 
phosphorylates IκB to activate NF-κB and make it transfer into the 
nucleus to stimulate interleukin-8 expression and increase p53 protein 
stability and then induce cellular senescence [49]. The third is the p38 
MAPKs pathway which is activated by ROS, and it up-regulates p19 
protein expression and limits self-renew to induce cellular senescence 
[50]. The fourth is the microRNA pathway. It has been reported that 
oxidative stress can affect the amount of microRNA and promote 
senescence [51]. 

With regard to senescence, the most accepted theory is that 
oxidative stress is an important driver for senescence [37, 46]. Generally, 
ROS produced by oxygen metabolism can induce damage in cells or 
organisms [52]. Oxidative stress plays an important role in senescence 
by transforming protein conformation, changing catalytic activity, 
altering protein-protein interactions and protein-DNA interactions, 
affecting protein transport, and altering some signaling mechanisms 
to activate NF-κB and Smad3 [53]. Studies have shown that under 
the conditions of cellular stress or DNA damage, senescence will be 

initiated to prevent the proliferation of DNA abnormal cells and the 
formation of tumors [54]. At the same time, autophagy is initiated to 
remove residual organelles in the cells, eventually to induce apoptosis 
to maintain the tissue and body homeostasis [54].

The relationship between senescence and mitochondri-
al dysfunction

Mitochondrion, an important organelle in eukaryotic cells, 
determines cell fate and death and participates in cell signaling [21]. 
Mitochondrial dysfunction disrupts the function of cells/tissues/
organs, which can causes lesions and even some age-related diseases 
[27]. Mitochondrial membrane phospholipids are sensitive to ROS-
induced lipid peroxidation, because it has many unsaturated fatty acids 
on it [55]. The reports about the increased lipid peroxidation with 
age-related mitochondrial membrane double bonds and fat suggest 
that ROS damage to mitochondria is related to the senescence process 
[55]. There is a mitochondrial protein quality control progress  in 
mitochondria, which is accumulated with oxidative damage [56]. 
When it exceeds its tolerance, the protein quality control mechanisms 
of other organelles are intervened to deal with the accumulation of 
mismatched proteins [56]. However, when the damage accumulation 
is beyond the ability of all quality control mechanisms, the damaged 
organelles are separated from other mitochondrial networks and 
then cleared out by mitochondrial autophagy [21]. Mitochondrial 
kinetics and mitochondrial autophagy regulate protein homeostasis 
and mitochondrial function accompanied by protein translocation 
and protein quality control [55]. The process is disrupted to cause 
mitochondrial stress and even senescence. Mitochondrial proteins are 
the first attacked by oxidative stress [27]. The proteins damaged by 
oxidative stress may be inactivated to lose their tertiary structure or to 
form toxic substances in organelles. Therefore, mitochondrial protein 
quality control system is very important [56]. The accumulation of 
mitochondrial DNA mutations induced by oxidative stress is associated 
with a progressive mitochondrial dysfunction, and promotes age-
related physiological function decline [21]. The relevant studies indicate 
that the mitochondrial ROS in long-lived mammals and birds is lower 
than that in short-lived species, accompanied by less mitochondrial 
membrane unsaturated fatty acid, less oxidative mitochondrial DNA 
damage and less lipid oxidation resistance [57]. 

Peroxisome dysfunction may be related with Mitochon-
dria dysfunction to give rise to cellular senescence

The relationship between mitochondria oxidative stress and cell 
death has been well discussed, but the potential role of peroxisomes 
in cell death pathways is emphasized in the recent studies that have 
shown that peroxisomes and mitochondria cooperate at different 
levels to maintain multiple metabolic and signaling pathways and 
share important components of some organelle division mechanisms, 
and that peroxisomes also have redox sensitivity [22]. Peroxisome 
plays an important role in lipid metabolism and often catalyzes 
reduction reactions [22]. Peroxisomes are important sites for ROS 
production and degradation, and maintain cellular oxidative balance 
and proper membrane lipid components to combat oxidative stress 
[47]. Disturbance of peroxisome metabolism makes cells more 
sensitive to oxidative stress [47]. Peroxisome dysfunction leads to 
impaired mitochondrial oxidative phosphorylation, increased number 
of abnormal mitochondrial structures, and altered activity and 
expression of the respiratory chain complex. After overexpression of 
catalase, mitochondrial redox balance and function are restored [47]. 
In summary, changes in peroxisome metabolism can seriously affect 
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mitochondrial function, but the specific relationship between them 
remains to be further studied [47].

Conclusion
Senescence plays an important role in various physiological 

and pathological processes. Senescence research maybe a potential 
breakthrough in the treatment of diseases [8,58]. It is reported that 
oxygen exercise, calorie restriction, balanced diet and other means 
can reduce the level of oxidative stress and maintain the balance 
of oxidation-antioxidant system in the body, which will delay the 
occurrence of age-related diseases as much as possible and the process 
of the body aging and prolong the life [59]. However, oxidative 
stress is the key to cellular senescence. As mentioned as above, the 
accumulation of external stimuli induced the production of ROS and 
reduced the ability of the body’s antioxidant components to scavenge 
free radicals to cause the age-related diseases and shorten the life span 
[26]. Abuse of oxidants may interfere with the normal physiological 
signaling pathways in the body and increase the risks of senescence-
related diseases [60]. 

In summary, the effect of oxidative stress on senescence is related 
to the function and structure of peroxisomes and mitochondria, but 
oxidative stress may cause senescence finally through mitochondrial 
dysfunction as shown as Figure 1. 
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