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Abstract
Neurodegenerative diseases and traumatic brain injury, whose hallmark features are the presence of focal axonal swellings (FAS), are leading causes of cognitive 
dysfunction. By leveraging biophysical observations of FAS statistics, we develop a theoretical model of functional neural network activity driven by adaptive changes 
from plasticity. Based upon the FORCE model of Sussillo and Abbott [1], our innovations highlight the role of plasticity in overcoming injuries and degeneration 
of neurons in a network architecture. We provide a quantitative measure, on a network level, of cognitive deficits arising from injury. We demonstrate that plasticity 
is capable of overcoming mild injuries while failing to compensate for more severe injuries. Such injuries are characterized by their underlying effect on spike trains 
propagating through the neurons in a network architecture. Specifically, spike trains can be filtered in firing rate, or blocked under more severe FAS. The level of 
injury dictates the FORCE model’s ability to produce a desired output functionality (and associated behavior) and allows for quantitative metrics for accessing 
cognitive and behavioral deficits. Thus a direct link between FAS in neural networks and compromised functional response can be established. The theoretical 
framework developed is a promising computational framework for providing a deeper understanding of the cognitive deficits arising in, for instance, Alzheimer’s, 
Parkinson’s, Multiple-Sclerosis, and TBI.
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Introduction
Neural plasticity plays a fundamental role in learning, memory and 

other executive functions. Although aging correlates with a natural 
decline in such cognitive abilities [1], notable deficits are usually 
associated with degenerative diseases or traumatic brain injuries 
(TBI). At present, limitations in biophysical measurements and 
neural recordings make it extremely difficult to extract the underlying 
mechanisms responsible for dysfunctions in neural networks, 
especially when circuits display intrinsically complex behavior and 
functional activity. Typically, the output patterns of such networks 
are associated with stimulus-induced behavior, thus suggesting that 
the neuronal networks are critical in data acquisition, processing and 
decision-making. In this manuscript, we build upon a recent model of 
neural plasticity and learning by Sussillo and Abbott [2] that captures 
key aspects of adaptive functional circuits in the brain. Specifically, 
we combine state-of-the-art biophysical observations about the role 
of focal axonal swellings in neurodegenerative diseases [3-5] and 
traumatic brain injury (TBI) [6,7] with their known impact on spike 
train encoding [8-10]. In doing so, we can quantity the cognitive deficits 
and compromised functional activity of the brain and the impact 
on its associated control (behavioral) protocols. Such a data-driven 
computational study is a first step to understanding on a network level 
the deleterious impact, in a quantifiable manner, of neurodegeneration 
and TBI.

A recent mathematical model of neuronal networks with feedback 
and control pioneered by Sussillo and Abbott [1], known as the FORCE 
model, has shown that even chaotic networks can be trained to produce 

a variety of output patterns, suggesting that synaptic plasticity may be 
more powerful than generally appreciated. The FORCE model thus 
provides a quantitative framework for understanding neural plasticity, 
allowing for robust encoding of given stereotyped input stimulus to 
prescribed output neural activity. Importantly, the FORCE model 
suggests an underlying biological mechanism by which collections of 
neurons can organize their behavior into target functions in order to 
enact sophisticated control protocols associated with behavior and/or 
functional activity. In living organisms, these target functions encode 
important biological functions such as motor actions [11] or sensory 
information [12,13]. In fact, simpler organisms like the nematode  
exhibit complex motor behaviors by combining a small number of 
body-shape modes [11], thus suggesting how target functions can 
be used for simple tasks like locomotion. In this study, we simulate 
networks with these key properties but in the presence of injurious 
effects arising from FAS that are believed to occur in many neural 
pathologies and TBI. Specifically, we combine biologically derived FAS 
statistics with their impact on spike train encoding [8-10] in order to 
characterize damaged neuronal networks. We also develop new metrics 
to track anomalies in the collective neural activity and failures in their 
overall ability to learn and reproduce target output functions.



Rudy S (2016) Cognitive and behavioral deficits arising from neurodegeneration and traumatic brain injury: a model for the underlying role of focal axonal swellings 
in neuronal networks with plasticity

 Volume 2(1): 114-121J Syst Integr Neurosci, 2016        doi: 10.15761/JSIN.1000120

More broadly, this study addresses the critically important 
effects of cognitive and behavioral deficits arising from FAS.  FAS is 
a hallmark feature of TBI which is annually responsible for millions 
of hospitalizations, with at least 1.7 million cases in the United States 
alone [14,15]. Reports estimate that 57 million people worldwide 
experienced some form of TBI [16]. It targeted around 15% of all 
veterans of the Iraq and Afghanistan wars, with blast injuries being 
the signature wound of these conflicts [15,16]. Numerous studies 
show that even mild concussions, if induced repeatedly, can lead to 
permanent brain damage; the issue is constantly debated in the sports 
media, but especially in football [17]. The pathophysiology of TBI is 
heterogeneous [18,19,16]. However, all severities of TBI trigger axonal 
damage widespread over a large number of neurons [20].

Injured axons are thus a diagnostic marker for cognitive and 
behavioral deficits [3,21], both in animals and humans [22-25]. In 
extreme cases, axons are sheared or disconnected, leading to cell death. 
But even in mild TBI, injured axons undergo changes culminating in 
FAS [6,7,25-28]. FAS can lead to dramatic changes in axon diameters, 
potentially interrupting axonal transport [29,30] and/or significantly 
impairing the underlying spike train propagation responsible for 
encoding information in neural activity [8-10,31].

Interestingly, many leading neurodegenerative diseases, which 
affects orders of magnitude more people than TBI, also display FAS 
as a hallmark feature. Indeed, modeling the effect of FAS in neuronal 
networks can also shine new light in neuropathologies where they 
are implicated, such as Alzheimer’s disease [4,5], Creutzfeldt-Jakob’s 
disease [32], HIV dementia [33], Multiple Sclerosis [34,35] and 
Parkinson’s disease [36]. For both neurodegeneration and TBI, FAS 
leads to compromised network functionality and control in the FORCE 
model. Thus, a drop in network performance can be interpreted as a 
proxy for cognitive or behavioral deficits, opening possibilities for novel 
diagnostic techniques in these deleterious and widespread diseases. 
Ultimately, we provide a first study linking connective plasticity and 
pathological developments after brain trauma or neurodegeneration.

Materials and methods
The modeling of neuronal networks is one of the most vibrant fields 

of computational neuroscience [37-39]. In our simulations we use the 
FORCE learning protocol [1]. The rationale is that before learning, both 
network activity and its output are chaotic. The network is then trained, 
i.e. synaptic weights are adjusted to match its output to a given target 
function.  Sussillo and Abbott [1] define the training of a neural network 
as a process through which parameters (typically synaptic strengths) 
are modified on the basis of output errors until a desired response is 
produced. Figure 1 illustrates the training process. After training, the 
network activity produces the coherent pattern periodically without 
requiring any additional weighting modification. Our contribution is 
a comprehensive study of how the effects attributed to FAS jeopardize 
the network functionality and training of the network. The network 
learning deficits have a clear biophysical interpretation, and anomalies 
in the injured output can be described quantitatively. Specifically, the 
normed distance between the target function and output of the network 
can be thought of as a measure for cognitive and/or behavioral deficit. 
Thus a trained and uninjured network would be able to match the 
target function whereas an injured (neurodegenerated) network would 
not accurately produce the desired target function. This connection 
will be explored further in what follows.

Training networks with FORCE

Training neural networks usually consists in applying a sequence of 
modifications that gradually improve the output. In FORCE learning 
[1], errors are maintained at small levels throughout the simulation. 
During the training period the learning scheme, rather than working 
to lower error, lowers the amount of training needed at each step. 
By the end of the training period, output weights have converged 
towards a value that recreates the periodic target function without 
further modification. During the testing phase of the FORCE learning 
simulation the target function is repeated periodically without any 
changes to the output weights. Networks initially exhibiting chaotic 
dynamics have been shown to achieve faster learning agreeing with 
several results which have shown that neural circuits exhibit chaotic 
dynamics for spontaneous spiking activity [40-43]

FORCE learning has been shown to be successful in several contexts. 
Most notable, it allows an artificial neural network to reconstruct a 
periodic target function. However, networks may also be trained to 
reproduce a non-periodic signal for a finite time, after which the output 
deviates from the target function while appearing qualitatively similar 
[1]. Networks may also train multiple outputs simultaneously. This is 
shown later in our results when an network trained using the FORCE 
protocol is used to effectively control the bi-modal simulated motion 
a worm.

When introducing an injury, through the impact of FAS [8-10], 
to the network it is unclear how exactly injury or neurodegeneration 
may affect neural plasticity on a biological/chemical level. Indeed, 
a current lack of biophysical evidence in this area is what has led to 
postulated theoretical models like the FORCE learning and spike train 
deterioration from FAS [8-10]. As a consequence, what we propose 
will be built upon reasonable assumptions that are validated with 
experimental evidence whenever possible. Additional complications in 
modeling arise when considering damaged networks before and after 
training. Specifically, if the network is injured prior to the learning 
phase of the simulation then we may still expect learning to achieve 
the desired post-learning outcome of a network that periodically 
reproduces the target function without further weight modifications. 
However such a network may experience difficulty during the training 
phase and fail to reach a stable set of output weights. If injured after 
training but before testing the resulting output signal will show the 
effect injury has on a network which has already learned a signal.

Regardless of when the injury occurs, in the FORCE algorithm, 
errors are always kept small, even at the beginning of the training process. 
Thus the goal of training is not significant error reduction, but rather 
reducing the amount of modification needed to keep the errors small. 
By the end of the training period, modification is no longer needed, 
and the network can generate the desired output autonomously. More 
precisely, modifications are stronger at the beginning of the training 
process and tend to zero as the network is trained, i.e. it is a self-tuning 
system for a given target function.

Network models

Over the past few decades, computational neuroscience efforts 
have developed a host of models for modeling individual neurons 
as well as network architectures [37-39]. Here, we will consider the 
network temporal dynamics using a firing rate model. Specifically, the 
network temporal dynamics is quantified by the firing rate vector r(t) 
of all it’s neurons. A more concise description of the network collective 
behavior is achieved by a weighted sum of these firing rates labeled as 
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the network output z(t). FORCE learning adjusts the readout weights 
wo to reproduce a specific target function that has been supplied to the 
network (Figure 1). A list of all the model variables can be found in 
Table 1. The algorithm updating the network state and output function 
is outlined below:

i. Update Firing Rates:	 x(t+△t) = (1−△t)x+Mr△t. 	                (1)

ii. Rectify Firing Rates:	 r = tanh(x). 	                                                                    (2)

iii. Calculate Output:          z = woT r 	 	                   (3)

iv. Re-weight wo with FORCE.

The connectivity matrix M is sparse, with non-zero entries normally 
distributed and scaled. Proper scaling of parameters prevents the state 
vector from blowing up or vanishing. Initial readout weights wo are 
random but they change at each step of the training period.

This algorithm will be used to train our network model to a 
variety of target functions. The connectivity matrix becomes critical 
in what follows as we will modify it according to various injury and/
or neurodegeneration protocols. The level of modification of M 
determines the extent of injury to the network.

Modeling injurious effects of FAS

Focal Axonal Swellings (FAS) are ubiquitous in neurodegeneration, 
aging and TBI. FAS can lead to a remarkable 30-fold increase in axon 
diameter [29, 30]. Additionally, recent works demonstrate that critical 
changes in axonal morphology can impair the underlying spike train 
propagation responsible for encoding information in neural activity. 
Figure 2 schematizes how we added such pathologies to neuronal 
networks: a fraction of axons develop swellings (in red) of different sizes 
and shapes proportionally to the severity of the injury. Their collective 
effects to the neuronal dynamics distort the output function. To date 
however, no electrophysiological recordings have been taken pre and 
post-FAS to quantify spike train dynamics. Thus the theoretical models 
of Maia and Kutz [8, 9, 10] provide the first and only quantification 
of spike train deterioration due to FAS. Using this model, we can 
characterize the effect of injury on the firing rate through a response 
function

ř = G(r, βj ). 					                      (4)

where ř is the firing rate after the FAS, r is the firing rate before the FAS, 
and β is a parameter indicating the one of three injury types applied 
to the network [8-10]. Specifically, axonal swellings have been shown 
to induce blockage (β1), reflection (β2), or filtering (β3) of neuronal 
spikes that comprise a spike train. The injury type is dependent upon 

the geometry of the swelling, with blockage being the most severe 
injury and filtering being the mildest effect of FAS.

From biophysical data collected on injury statistics [28], both in 
swelling size and frequency, we assign accordingly a certain percentage 
of each type of injury to the network used in simulation. For a blockage 
injury (β1), no signal passes the swelling so the effective firing rate 
of the neuron goes to zero so that ř = 0. Filtering injuries were taken 
to decrease the firing rate, with higher firing rates having a stronger 
chance of decreasing to pile-up effects in the spike train [8]. Reflection 
of spike trains, which only occurs for an extremely narrow range of 
parameter space, and thus are very rare, effectively filters the firing 
rate of an axon by lowering it by a factor of two so that ř = 0.5r. Note 
that filtering and blockage are the dominant effects and are the critical 
drivers in determining cognitive deficit.

Proxy for behavioral deficits

Thus far, we have mixed the notions of cognitive and behavioral 
deficits. Indeed, the viewpoint taken here is that impaired cognition 
leads to impaired behavioral performance. To demonstrate this more 
quantitatively, simulations were also performed using a network 
producing two simultaneous outputs which were used to control 
the motion of a two-mode (eigenworm) swimmer as studied in Refs. 
[11,44]. As would be expected, the motion of the two-mode crawling 
behavior is negatively impacted by introducing FAS into the simulated 
network. In this case, Table 1 is modified in order to include the two 
output functions and two output network weighting functions. This 
example directly addresses behavioral deficits as a proxy for cognitive 
impairment.

The network used to control the eigenworm network is more 
complex than the single target output system. Specifically, we have 

Figure 1. Schematic diagram of basic FORCE learning model [1]. An artificial neural 
network is given an input in the form of a target function. The network output is 
generated via a weighted sum of neuron firing rates. Weights assigned to each neuron 
are adjusted using FORCE learning to achieve an output similar to the target function. 
Perfect functionality is achieved if the output is identical to the target function. In contrast, 
cognitive deficits will occur when the output is unable to produce the expected target 
function.

 

Figure 2. a. Visual comparison of healthy and injured network. Red axons that have been 
affected by FAS will result in decreased learning ability. b. Sample target functions and 
outputs taken from the same network with and without injury. Note that the uninjured 
network effectively reproduces the target function, while the injured network incurs 
noticeable errors. c. Biophysical example of axonal swellings taken from Tang-Schomer 
et al. [29].
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two outputs, z1 and z2, each modulating the activity of one of the two 
modes of the eigenworm. Figure 3 shows the basic configuration for 
consideration. The network is thus partitioned into four blocks and each 
is constructed to be a small world network that may be sparsely or fully 
connected. There are sparser connections between the four small world 
networks. Two of the sub-networks are labeled output networks whose 
firing rates provide the two outputs and two are control networks, used 
to aid in the learning. Each of the control networks is associated with an 
output network via a feedback loop. Each of the four is assigned a set of 
output weights and there are also feedback weights that will be used to 
feed the output from control (1 or 2) back into both control and output 
(1 or 2). The model is as follows:

x = (1−dt)x + Mrdt + wf,1y1dt + wf,2y2dt 		               (5a)

r = tanh(x) 				           	              (5b)

z1 = wo,1Tr				           	              (5c)

z2= wo,2Tr				           	                (5d)

y1 = wc,1Tr r				           	              (5e)

y2= wc,2Tr				           	                 (5f)

where the following are updated with the FORCE model

wo,1, wo,2, wc,1, wc,2	 			                 (6)

Note that each output weight vector is a column vector with 
as many entries as total neurons. However, only a subset of them 
corresponding to the indices of it’s respective network are non-zero. 
So wc,2, the output weights for the second control unit, only has non-
zero entries for indices corresponding to neurons in the sub-network 
that we are using as the second control unit. Likewise, each feedback 
loop from the control unit’s output back into the network only effects 
that control unit and the output we associate it with. Feedback from 
control network 1 only goes to control network 1 and output network 1 
neurons, so wf,1 only has non-zero entries for neurons in control 1 and 
output 1.  Note that we treat different groups of outputs differently in 

the learning step. Thus wo,1 and wc,1 are adjusted using the error from z1 
while wo,2 and wc,2 are adjusted using the error from z2. Each output and 
each control network is given it’s own inverse correlation matrix (four 
in total) that is updated separately using the firing rates from it’s own 
neurons. The feedback loop weights and internal connectivity M were 
not adjusted.

Results
Metrics for cognitive deficits

Of particular interest in studying damaged network functionality 
was a quantitative measure of cognitive deficit. We chose to use the 
simplest metric possible, i.e. the summed magnitude of the difference 
between the target function and the simulated network output. The 
network output error was quantified as the summed magnitude of the 
error between the target function and output during the training phase 
of a FORCE learning scheme on an injured network. We normalized 
the error such that an output of zero, i.e. all neurons are blocked, 
resulted in an error of one. This measure of error was studied at various 
injury levels in order to analyze the onset of cognitive deficits due to 
increasing injury (neurodegeneration) levels. Figure 4 illustrates the 
increasing levels of injury on a network of 1000 neurons with injuries 
equally distributed between blocked (β1), reflected (β2), and filtered 
(β3) neurons. We ran the same simulation for 250 trials in order to 
collect a statistical sampling of the cognitive deficits. Additionally, 
four different injury levels where considered which resulted is 
notably different behavior. Data from each trial was distilled into the 
measure PI(e), a probability density distribution for the error to fall 
within a specified range e given an injury level I. The data statistics is 
summarized in Table 2. An uninjured network will generally have very 
low error with little variance. As the injury is increased, the variance of 
the error increases significantly as the behavior of the network output 

Figure 3. Eigenworm swimmer network inspired by a two-mode model for forward 
crawling behavior of the nematode C. Elegans.

 

Symbol Description
x vector of firing rates

r = tanh(x) rectified firing
τ time constant

M connectivity matrix
wo output weights
z network output

Table 1. List of key variables of the FORCE model architecture using a firing rate model.

Figure 4. a. Sample outputs from networks during training phase superimposed with target 
function. The injury level increases from top to bottom, ranging from 0%, 15%, 30%, 
and 45% of neurons being affected. Injury types are evenly divided between blockage, 
reflection, and filtering injuries. b. Histogram of error in network output taken as summed 
magnitude of difference between target and output functions. The error is normalized such 
that an output which is uniformly zero (a completely blocked network) will have error equal 
to one. Data is taken from 250 trials at each injury level using 1000 neurons.

 

Injury Level μ σ2 γ1

0% 0.1183 0.0146 3.9857
15% 0.3235 0.0525 0.8402
30% 0.6511 0.0347 -0.829
45% 0.9076 0.0016 -3.6571

Table 2. Statistical properties of output error from Figure 4. Mean, variance, and skewness 
are given respectively for each injury level.
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becomes less predictable. At higher injury levels, the network tends 
to fail entirely, and the error once again becomes more predictable 
resulting in lower variance. Distributions tending towards low or high 
error are skewed towards the opposite levels of error.

In order to measure error in network output, a standard L1 (or 
summed magnitude) measure was used. Error was taken to be the sum 
of absolute differences between the training function and neural output 
and then normalized via multiplication by a constant factor so that a 
neural network output of zero (a network that is completely blocked) 
would correspond to an error of one. There are several reasons for why 
this metric was chosen. First, the normalization allowed us to measure 
error on a scale between 0 (a perfect output) and 1 (no neural activity 
at all), and while higher errors were possible, they were not observed. 
The L1 also has advantages of the maximum error metric because 
small spikes in the error would not result in a high measurement for 
the entire simulation. Rather, significant errors were the result of the 
learning failing over a longer period of time which was often observed 
at higher levels of injury.

Progression of FAS & injury effects

The progression of the network output error was also studied in the 
context of a single injury type. Simulations were run using the same 
network from Figure 4 with injury levels running from zero to eighty 
percent. The average normalized error and the standard deviations are 
plotted in Figure 5. For intermediate levels of injury, there is a large 
spread of errors present with increasing error as injury is increased. 
At high levels of injury the error levels off towards it’s maximum value 
of one. The spread of values for the error at high injury becomes very 
small, as expected since the network completely fails with each trial.

Of particular interest in studying the onset of network error with 

gradually increasing injury was the behavior observed when the three 
individual types of injuries were used. Blockage and reflection behaved 
similarly, asymptotically approaching the maximum level of error by 
the time injury was taken to be eighty percent. The filtering injury 
resulted in qualitative different behavior in the error taken at various 
injury levels, not reaching the limiting value of maximum error in 
the range of injuries studied, thus suggesting filter to be more robust 
in networks than blockage and reflection. This is not unexpected as 
blockage (or axotomy) and reflection are more severe injury types.

Synaptic re-weighting under injury

Recall that network output is generated via a weighted sum of the 
activity of each neuron. In the FORCE learning model these weights 
are adapted to produce the desired output. Using the same simulation 
set-up as for studying the error of the network output, we studied 
how the learning scheme may differ between transmitting and injured 
neurons. Figure 6 illustrates that depending on the type of injury there 
are very different results. As before, filtered neurons differ in behavior 
from blockage and reflection. The quantity ⟨wo(t)⟩ was taken to be 
the mean magnitude of output weight for the neural network at some 
time t during the course of the simulation. As learning proceeds, this 
weight is observed to increase. For a healthy network the change would 
be expected to level off after a certain period of time longer than the 
simulation used. However, when the network is injured and we observe 
the average magnitude of ouput weights for injured and transmitting 

Figure 6. Average magnitude of output weights (100 trials) over the course of training 
with injury occurring half way through simulation. Learning results in mean magnitude 
of output weight increasing as simulation proceeds. a. Simulation of network with 1000 
neurons and 15% of neurons experiencing blockage injury. Vertical dashed line indicates 
time of injury. Note lesser increase of average magnitude of output weight associated with 
blocking neurons. b. Simulation with 15% reflecting neurons exhibiting similar behavior to 
blocking neurons. c. Simulation with 15% filtered neurons. Learning now results in more 
rapid increase in average output weights.

 

Figure 5. Plot of normalized error averaged over 50 trials during the training phase of a 
network with injury using 1000 neurons. Shaded regions indicate one standard deviation 
above and below mean error. a. Injury type for neurons is divided evenly between blockage, 
reflection, and filtering. The three vertical lines along with vertical axis indicate injury 
levels present in Figure 4. b. Average error for specific injury types; blockage (blue), 
reflection (red), and filtering (green). c.-e. Individual plots for the averaged error of each 
specific injury type: Blockage, reflection, and filtering. The network appears more robust to 
filtering than blockage and reflection.
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neurons separately we see that the increase in output weights for 
injured neurons is different than that for healthy neurons. We also 
observe that the filtered neurons behave differently, exhibiting a sharp 
increase in ⟨wo(t)⟩. Interestingly, since there is a greater increase in the 
change in output weights for filtered neurons, they could potentially 
be more effected by a limit on plasticity, or dynamic range of neural 
reweighting.

Injuring a swimmer network model

To connect our model to a more concrete neural network 
application, we incorporate key elements of the neurosensory network 
of the The nematode is an important model organism due to the fact 
that it possesses only a small number of sensory neurons, often linked 
to specific stimuli [45], and its range of behavioral responses is varied 
yet limited, confined to swimming, crawling, turning, and performing 
chemotaxis, for instance. Thus it is reasonable to posit in future 
work a complete model of its neuronal (neurosensory integration) 
capabilities and evaluate the cognitive deficits that arise from FAS in 
such functional network. 

The selection of the swimmer as a toy model to demonstrate the role 
of cognitive deficits and the FORCE model results from observing the 
behavior of a . Specifically, forward crawling is known to be dominated 
by a two-mode stroke motion [11], i.e., the so-called eigenworm 
motion. Thus the motor-neuron response to PLM stimulation 
produces a two-mode dominance in accordance with the eigenworm 
behavior given that the motor responses control muscle contraction 
[46]. Indeed, a constant input of sufficient strength, corresponding to 
a sensory stimulus, is able to drive a two-mode oscillatory behavior in 
the forward-motion motor neurons [44].

In Sussillo and Abbott [1], a demonstration is given of the FORCE 
model for a walking motion. This highlights both the learning and 
control aspects of the model. In such a model, 100 outputs are 
required to drive the walking motion. Here, we greatly simplify this by 
considering the forward crawling motion of c. elegans, thus we require 
only 2 outputs to drive the two mode forward crawl. Our objective 
is simply to demonstrate the compromised functional circuitry, and 
impaired behavior, arising form injury. Indeed, this simple example 
illustrates all the key features of our analysis and provides intuition 
about the effects of neuronal damage on a network level. Namely, it 
shows how damage in the FORCE model compromises both learning 
and control, leading to a stunted forward crawling motion as a 
behavioral consequence.

A simulation of the motion of a two-mode swimmer was run 
by constructing a network with the FORCE learning scheme which 
controlled each of the two modes. The model is demonstrated in 
Figure 3. Network outputs were each trained to be oscillatory functions 
modulating the superposition of two normal modes of motion for the 
worm. This network was injured at various levels and the motion of 
the worm constructed from the resulting network outputs. Snapshots 
of the position of the worm at various injury levels and times with the 
desired behavior (target function) are shown in Figure 7. These provide 
a clear way of observing a model of cognitive deficit due to injury. The 
uninjured swimmer is able to follow the pattern of motion supplied 
to its neural network while the injured ones have progressively more 
difficulty as injury level is increased. Since the swimmer is controlled by 
two modes, we may also use phase plane analysis to view the trajectory 
of these modes relative to the desired path. Plotting these phase portraits 
gives another picture of how the injury affects learning in the artificial 
neural network. Indeed, the behavioral deficit is clearly observed in a 

compromised crawling motion of the worm. For humans, this might 
correspond to other deficits in motor/executive functions due to injury.

Discussion
The modeling of neuronal networks is critical for understanding 

almost all cognitive and behavioral phenomenon in neuroscience 
[37-39]. There have been hundreds of network models proposed in 
the computational neuroscience literature, with varying levels of 
complexity, architectural configurations and capabilities. Neuronal 
network models are used in decision making studies, learning tasks, 
memory studies, control theory and most brain science modeling. The 
range of biophysical details may vary, with some systems being vaguely 
inspired from biological settings, to others that incorporate cutting 
edge experimental measurements. This work combines state-of-the-art 
neuronal network modeling with the most recent and in-depth studies 
of neuronal pathologies in TBI and leading neurodegenerative diseases, 
demonstrating the clear and ubiquitous role that focal axonal swellings 
play in compromised neural processing and the resulting cognitive and 
behavior deficits.

From a signal processing point of view, recent reviews highlight 
the fact that axons do more than just faithfully transmit spike train 
encodings from upstream to downstream neurons: they are responsible 
for important signal and information processing [47-50]. Thus when 
considered in a network architecture, it is not coincidental that FAS, 
axonal deformation, regional compactation, and myelin abnormalities 
resulting from TBI in humans [51,52], rodents [53], and swine 
[54], are directly related to post-traumatic cognitive, physical and 
psychosocial dysfunctions. In theory, the modeling is driven by the 
fact that geometric structure changes in the axon can drastically alter 
axonal functionality and spike propagation dynamics [8,9]. How such 
pathologies developed at a single-cell level can affect the functionality 
of a neural network is the focus of this work. Specifically, we introduce, 
for the first time to our knowledge, dynamical anomalies attributable 
to FAS in trainable chaotic networks [1], and compared their ability to 

Figure 7. a. Snapshots from a simulation of a two-mode swimmer. Modes are modulated by 
simultaneous outputs from a network being trained using the FORCE model with varying 
levels of injury. Blue worms are desired output and red worms are network output. b. 
Trajectories of each swimmer in phase space. Blue line indicates the desired trajectory 
in phase space and red is trajectory of network output. Although the specific eigenmodes 
could be used [11], it is sufficient for demonstration purposes to use a sine and a cosine 
with slightly different amplitudes to construct the proof-of-concept behavioral deficit of the 
forward crawling motion.
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learn and reproduce a broad range of target functions before and after 
injury.

Our modeling efforts are based upon firing rate models of networks 
of neurons [37-39] and a recent innovation of the FORCE learning 
protocol [1]. The FORCE model is particularly relevant as it is one 
of the few biophysically inspired models to address plasticity effects 
and network control for producing robust output patterns associated 
with behaviors. So although finding meaningful target functions and 
calibrating parameters to match specific brain circuits is an extremely 
challenging task, the FORCE model is one of the few to attempt to 
address this directly. It should be noted that other computational 
neuroscience models with different learning strategies or architectures 
might respond differently to FAS injuries. In all such models, we would 
expect that the integration of our FAS modeling and statistics, which is 
based upon state-of-the-art biophysical experiments, would also allow 
for a characterization of cognitive deficits in these alternative neuronal 
network architectures. The FORCE protocol minimizes the amount of 
change in connection strengths while matching the network output 
to a desired target function. It is unclear, however, how a fraction of 
nonresponsive or dysfunctional neurons would affect this plasticity 
strategy. Our results show that reweighting is strongly dependent on 
the type of axonal injury, suggesting that plasticity mechanisms after 
brain injury may be more sophisticated then generally appreciated, 
especially as filtering of firing rates can be nearly as detrimental as 
axotomies (blockage) in producing robust information processing.

Of particular importance in this work are the one we have 
introduced to evaluate cognitive deficits at a neural network level. This 
complements and integrates recent and ubiquitous FAS biological 
findings concerning FAS that rely exclusively on psychophysical of 
biophysical experiments. Moreover, for simpler organisms such as the 
nematode c. elegans, our results suggest that the network’s inability 
to reproduce key target functions can be directly linked to behavioral 
deficits. This opens up the interesting possibility of directly mapping 
observable declines in behavior (crawling or other executive/motor 
function) to injuries occurring at a cellular level in a network. We 
characterized the network output error statistically as a function of the 
injury level, estimating average error growth and variability. Indeed, a 
characteristic of the statistics, such as the sign of the skewness, changes 
as the induced injury level is increased. This statistical signature suggests 
a potential biophysical marker for diagnostic and pharmacological 
treatment protocols based upon injury level.
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